
554 IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES November

From the unitary condition on S, we have

(s*s),,,+, = S s~,~.s,,,+, = o
k=l

and therefore si_l, i* si_l, i+l+s., i* s~,~+l = o

Substituting in (21) gives

l!_l,~+l = o for all i.

Hence the matching at port i isolates port i+ 1 from

port i–l.

III. CONCLUSIONS

It has been shown that a certain class of three-port

network can be transformed into a circulator by the

addition of an appropriate reactive discontinuity at

each port. This transformation is possible if the three-

port junction is loss-free and such that (for suitable

port numbering) the transmission from port 1 to 2 is

greater than from 2 to 1, from port 2 to 3 is greater

than 3 to 2, and from 3 to 1 is greater than from 1 to 3.

When the three-port network is symmetrical, the re-

striction reduces to the network, being loss-free and the

moduli of the two transmission coefficients being dif-

ferent.

The important consequence of the proposed synthesis

is that it is not necessary to obtain complete matching

by means of the ferrite junction configuration and ap-

plied magnetic field, but that external reciprocal ele-

ments may be used, which have, of course, predictable

characteristics. Hence, an approach to the design of

broad-band circulators is proffered.

It has also been shown that by the use of small reac-

tive discontinuities, an imperfect (but loss-free) n-port

circulator can be matched to make vanish, simul-

taneously, the reflection and one transmission coefficient

at each port. The effect of these small discontinuities on

the other transmission coefficients is of second order

of smallness, so that they cannot generally be made

zero. It follows that the isolation of a practical four-

port circulator must be optimized within the junction,

but any small remaining reflection and cross-coupling

can be matched externally by reactive discontinuities.
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Propagation of Surface Waves on an

Inhomogeneous Plane Layer*

J. H. RICHMOND~,

Summary—The permittivity of a plane layer is assumed to vary
continuously as a function of distance measured from the surface.

Solutions for the field dktributions of surface waves on the inhomo-
geneous layer are developed with the WKB technique. Transcen-

dental equations for the phase velocity are derived for TE and TM
modes. These equations are solved most conveniently with the aid
of phase-velocity graphs which are included. The accuracy of the
solution is verified by comparison with the rigorous solution for an
exponential inhomogeneity.

INTRODUCTION

‘HE PERMITTIVITY of most radome ma-

T
terials changes by a significant amount when the

temperature is increased by hypersonic flight

through the atmosphere. The outer surface of the

radome becomes hotter than the inner, resulting in a
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continuous variation in permittivity even if the

radome was designed as a homogeneous structure.

Moreover, new techniques of radome fabrication may

make feasible the construction of continuously in-

homogeneous radomes. This can be accomplished with

variable loading or with variable density foams. Al-

ternatively, a multilayer sandwich having many thin

laminations can form an adequate approximation.

These structures may have a greater bandwidth or may

allow a greater range of incidence angles than conven-

tional radomes.

The characteristics of surface waves on inhomo-

geneous layers are of interest to the radome designer

because he must minimize the excitation of these waves

and their deleterious effects on the radar system per-

formance. The antenna designer is interested in the ef-

fects of unintentional inhomogeneities, arising from

thermal gradients, on the performance of surface-wave

antennas, and the advantages that may accrue from

the use of intentional inhomogeneities in such antennas.
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Exact solutions in closed form areavailable only for

a few special cases including the linear and exponential

inhomogeneities. Step-by-step numerical integration

can be applied to the analysis of surface waves on in-

homogeneous layers only on a trial-and-errm basis.

A more convenient and useful solution, the WKB

solution (Wentzel, Kramers, and Brillouin [1 ]), is de-

veloped for the field distribution of surface waves on

inhomogeneous plane layers. These expressions are

employed in deriving the transcendental equations for

the phase velocity. These can be solved most conven-

iently by means of the graphs which are included. The

accuracy of these results is demonstrated by comparison

with the exact solutions for exponentially inhomogene-

ous layers. Finally, the limitations of the WKB solution

are discussed for layers having rapid variations in per-

mittivity.

THEORY

Genera!

Defining a coordinate system as in Fig. 1, consider

the waves which can exist on a lossless, isotropic, in-

homogeneous layer and have the following properties:

1) Harmonic time dependence ei”l,

2) Plane phase fronts (space dependence e–~fiz),

3) No dependence on the y-coordinate, and

4) Exponential decay e–”’ normal to the layer,

The dielectric layer is assumed to be infinitely wide but

of finite thickness d. Media I and 1[I I are homogeneous

with permeability MO and permittivity CO. The per-

meability p of region 11 is assumed constant, but it

may differ from PO. The permittivity C(X) may vary

continuously as a function of distance from the center

of the layer. It is assumed to be an even function of x

and discontinuous at x = f a.

Fig. l–-An inhomogeneous plane layer and the coordinate system.

Tll Surface Waves

For the TE surface waves it is assumed that the

electric field intensity vector E is parallel with the y-

axis and is given by

1
e‘“’e–ah= in region I

E. = ~(x)e–~h’ in region II (1)

eaxe–ihz in region 111

and

Ez = E, = O. (2)

From Maxwell’s differential equations it follows that

Bti=o (3)

and

“1
( –ja/tiv,)e-”’e-”z in region I

H. = ~ ‘u = (j/oJp)f’ (x)e–~hs in region II (4)
OJp d x

(ja/tipo)ecze-$fiz in region III

where

f’(x) = df/dx. (5)

The boundary conditions require that EU and Zfz be

continuous at x = O, x = a and x = —a. These conditions

lead to the following:

~(a) = e-”” (6)

j’(a) = – a~,e-a” (7)

f’(o) = o (8)

where

/4’ = w’/Jo. (9)

Furthermore, Maxwell’s equations yield the following:

j“(z) + (a’p, – h’)f(x) = o. (lo)

If the permittivity is a slowly varying~ function of x,

the WKB [1] solution for (10) is useful. It can be

written in the form

f(x)

A COS
s s

“~tiZp,– IZZ dx+B sin , a~u’pc – h’ dx
x

. ——
(@2p, –/S#)l/4

——, (11)

The constant coefficients A and B are determined by

use of (6) and (7). In performing the differentiation n in-

dicated in (7), it is assumed that the numerator in (11)

is a much more rapidly varying function of’ x than the

denominator. This leads to the following:

A = (OJ2pW0— kz) 1/4e–”a (12)

B = prae–””/(c02pc.e0 – h~) 1/4 (13)

where ~a is the relative permittivity at the edge of the

inhomogeneous layer (at x = a).

Eqs. (8), (11), (12) and (13) yield the following

transcendental equation for the TE surface waves:

s

a
tan k ~prer – h’/k’ dx =

prq’k
——= (14)

o ~p,,. – h2/k2

where

k = q/poeo. (15)

1 Eq. (44) gives a more precise statement of the limitations of the
WKB solution for layers having rapid variations in permittivity.
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When the wave equation is applied to the field expres-

sions in region I it is found that

a2 — h, = _ k,. (16)

It is possible to solve (14) and (16) to determine the

surface-wave phase constant h, or h/k. A convenient

method of accomplishing this is developed in a later

section,

TM Surface Waves

Since the derivation for the TM

similar to that for the TE waves, it

the equations below.

H% =

Hu =

IL =

H,= E,=O.

1

e–aze–~hz in region 1

f(x)e-~h” in region II

~.ze–jhz in region III

1

(jajup~)e-”ze-ihz in region I

( –j/@e)j’(x)e-~hZ in region II

surface waves is

will suffice to list

(17)

(18)

(19)

l(-ja/oeO)e”’e-ihS in region 111
(20)

f(a) = e-a”

f’(a) = – aeue-”” (21)

f’(o) = o (22)

f(x) = d;

sa
tan k ~p,er – h2/k’ dx =

eaa/k
– (26)

o <p,ea – h2/k2

a2 — h2 = — k2. (27)

Since E.= O at x = O, a metal plane may be inserted

at x = O without disturbing the fields of the TM mode.

Thus, the equations apply equally well for a layer of

thickness a on a metal plane and a symmetrical layer

of total thickness 2a without a metal plane.

EXACT SOLUTION FOR EXPONENTIAL lNHOMOGENEITY,

TE C.4SE

If the permittivity varies with x in accordance with

ye,(x) = h2/k2 + ce~l’l, (28)

itwill be referred to as an ‘(exponential inhomogeneity, ”

and (10) reduces to

j“(x) + k’ce’l’~(x) = O. (29)

The quantities p,, h, k, c and b are independent of x.

The exact solution of (29) is given by

f($) == F~o(+) + G ~0(+) (30)

where

The coefficients F and G can be determined by means

of (6) and (7), yielding

where superscript a indicates an argument ~ evaluated

at x =a, and sgn (b) is unity if b is positive and — 1 if b

is negative. Eqs. (8) and (30) yield

W-L. w (b) J; Y: – J; Y;

k~c–ebalz = J;Y; – J~Y;
(34)

where the superscript o indicates an argument $ eval-

uated at x = O. Furthermore,

&-h2=_k2e (35)

Eqs. (34) and (35) can be employed to calculate the

phase constant h for TE surface waves on the inhomo-

geneous layer described by (28).

It should be pointed out that this rigorous solution

applies to a plane layer whose permittivity is the sum

of an exponential function and a constant, provided that

this constant happens to be the square of the relative

phase constant [see (28) ].

GRAPHICAL SOLUTION

It is interesting to compare the transcendental

equations for surface waves on homogeneous and in-

homogeneous layers. For TE surface waves on a homo-

geneous layer of thickness 2a’, relative permeability p,

and relative permittivity e. [~],

d
h2/k2 _1

/4 ‘— – tan ka’~p,ea — h2/k2. (36)
Pre. – h2/k2 –

For TE surface waves on an inhomogeneous layer of

thickness 2a, relative permeability p, and relative per-

mittivity e,(x), (14) and (16) yield

d h’/k’ – 1 saP, —=tan k ~;e, – h’/k2 d.v. (37)
PVC. — hz/k2 o

A comparison of these two equations shows that the

phase constant k is the same (in the WKB approxima-

tion) for the homogeneous and inhomogeneous layers if

sa

~p,q. – h2/k2 dx
o

a’ =
~p,ea – h’jk’ “

Obviously (37) is satisfied by that value of

satisfies both (36) and (38). The solution

(38)

h/k which

of (36) is
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plotted in Fig. 2 as a curve of h/k vs a’/AO for a TE

wave on a homogeneous layer having p,e. = 8. (AO repre-

sents the wavelength in free space. ) Given the per-

mittivity function e,(x) for an inhomogeneous layer, it

is possible to plot the solution of (38) on the same graph

by choosing several numerical values for 7z/k and

carrying out the indicated integration to determine the

corresponding values of a’, The phase constant h (or

A/k) for the inhomogeneous layer is then determined

from the intersection of the two curves.

The transcendental equation for TM suu-face waves

on a homogeneous layer is [2]

the WKB formulas it is assumed that the permittiivity

is a slowly varying function. In particular, it is as-

sumed that

%.] e;] << 2k(prEr - J,’/k’)’/’ (41)

everywhere except at the edges where the permittivity

is discontinuous. (The prime indicates differentiation

with respect to x.) Accurate results may be anticipated

only if this inequality is satisfied.

In Examples 1, 2 and 3 (Table I), inequality (44) is

satisfied by a factor of 1.00, 5.00 and infinity, respec-

tively. It may be noted in Table I that accurate results

are obtained if (44) is satisfied.

v’
/’2/~T– 1 Fig. 3 shows ‘the exact and WKB solutions for the

% = tan ka’~p,ea – lt2/k2. (39)
p,e. — lzz/k2

From (26) and (27), the transcendental equation for 30

TM surface waves on an inhomogeneous layer is

~k’–l =tank “
~a

d sVI’Fl~/Z@d%.(40)
~Te. — lr?/k2 o

A comparison of (39) and (40) shows that (40) is 2,0

satisfied by that value of h/k which satisfies both (38)
~
k

and (39). The solution of (39) is plotted in Fig. 2 as a

curve of lz/k vs a’/ho for TM waves on a homogeneous

layer having N,E. = 8. The phase constant for an in-

homogeneous layer is determined by the intersection

of this curve with the graph of (38). 10
0

To illustrate the results that may be expected from
010 ~, 020

T.

the WKB formulas, three examples are listed in Table I.
.

The locus of solutions of (38) is plotted in Fig. 2
Fig. 2—Relative phase constant vs thiclmess for TEo and Tl\l Osur-

face waves on a homogeneous dielectric layer of thickness 2a’.

TABLE I

PHASE VELOCITY OF TEo MODE o~ INHOMOGENEOUSLAYER HAVING a = 0.25k0
.—.— .—

Example
I

w+’)
i

w,(o) I p,e, (a) I h/k

I

h/k
WKB Exact

1

-—

0 .2966e’OS’2~1’l +6 .3.S90 6.6556
2

2.565 2.5217
0 .5388e0’’*’lzl +7. 1455 7.6843

3
: 2.685

8.0
2.6731

8.0 8 2.71 2.71

for Example 1. The trapezoidal rule, Simpson’s rule; or

tables of integrals may be used to evaluate a’ in (38)

for several values of h/k. The resulting data points

(h/k, a’) are entered on Fig. 2 and connected by the

curve labeled “Eq. 38. ” The intersection with the TEO

curve yields L/k = 2.565 as listed in Table I, and the

intersection with the TMO curve yields h/k= 2.490.

The exact solutions listed in Table I were obtained by

letting ~(o) = 1 and ~(a) = 2.3522 for Example 1, and

~(o) =5 and $(a) =6.2964 for Example 2. ~(x) is de-

fined by (31).

For TE waves, comparison of (36) and (37) shows

that the WKB solution reduces to the exact solution

in the special case of the homogeneous layer. For TM

waves (39) and (40) show that the WK.B solution is

exact for the homogeneous layer. In the derivation of

I
WKB

–II

/

4

f
Exact Example Example

2 3
Example

1
h

12 pf~r(x) = ce blxl + &
~z

c = 0.25ko

pr. r(a) = 8.0

,~-J
6 7

6,(0)

Fig. 3—WKB and exact s?hstio~s for the relative phase velocity
on an exponentially mhomogeneous la yer.
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relative phase velocity on exponentially inhomogeneous

layers such as those listed in Table I.

Additional curves of phase constant vs thickness

are available for homogeneous layers having P,C, = 2, 4,

8 and 15 [3]. These may be employed in solving for

the phase constants of inhomogeneous layers having

ppc. = 2, 4, 8 and 15 with the technique described herein.

CONCLUSION

The permittivity of a plane layer is assumed to vary

continuously as a function of distance measured from

the surface. Solutions for the field distributions of sur-

face waves on the inhomogeneous layer are developed

with the WKB technique. Transcendental equations

for the phase velocity are derived for TE and TM

modes. These equations are solved most conveniently

with the aid of phase-velocity graphs which are in-

cluded. The accuracy of the solution is verified by

comparison with the rigorous solution for an exponential

inhomogeneity.

Reasonably good accuracy is obtained even when the

relative permittivity varies from 6 to 8 in a distance of

0.25 wavelength.

The for~mulas presented herein reduce to the rigorous

solution for homogeneous layers and are accurate if

the permittivity gradient is small at each point within

the layer.
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UHF Backward- Wave Parametric Amplifier*
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Summary—This paper describes a breadboard model of a UHF

varactor diode backward-wave parametric amplifier that can be

electronically tuned over an octave tuning range (250-500 Me). It

operates in a mode that has a relatively constant idler frequency;

however, it uses two forward-wave transmission limes in contrast

to the backward-wave transmission line requirement previously

reported.

A theoretical dkcussion on the design considerations of this

mode is presented and applied to the UHF model. Measurements

taken in the conventional mode of operation (output frequency equal

to the input frequency) yielded voltage gain bandwidth products in

excess of 100 Mc and over-all effective receiver noise temperatures

of less than 140”K. Detailed measurements in the mode where the

constant idler frequency is used as the output were not taken because

directional filters and circulators, which are necessary in this mode,

were not available.

I. INTRODUCTION

T

HE BACKWARD-WAVE parametric amplifier

(BWPA) is a low-noise preamplifier that is capa-

ble of being electronically tuned at a rapid rate

over a greater-than-octave tuning range [1 ]– [3 ]. It

* Received March 5, 1962; revised manuscript received July 5,
1962. This work was performed under Contract AF 30(602)-2197
with the United States Air Force Systems Command, Rome Air
Development Center, Grifiss Air Force Base, Rome, N. Y.
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Park, Long Island, N. Y.

~ Airtron, Inc., Morris Plains, N. J.

consists, in general, of two separate and distinct cir-

cuits that are coupled together by means of nonlinear

or time-varying reactive elements.

Recently, a new class of BWPA has been evolved

[4], [5] in which the center frequency of the output

pass band (which is taken at the idler frequency) re-

mains constant as the input amplification band of the

amplifier is varied. This is an advantage over the con-

ventional BWPA since it eliminates the tracking prob-

lems associated with the complex demodulator neces-

sary to convert the normally varying output frequency

to a constant IF. It thus yields an amplification system

that has a greater tuning rate potential than that of the

conventional BWPA. However, the realization of this

amplifier mode required one of the two coupled trans-

mission lines to have a backward-wave characteristic,

which at the lower frequencies does not present any

problems but presents increasing design difficulty as

the frequency approaches the UHF and microwave

region.

This paper proposes a new configuration that yields

a nearly constant idler frequency over an octave tuning

range in which both of the coupled transmission lines

are forward-wave types and it presents theoretical and

experimental results of a UHF model whose design was

based upon this configuration.


