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From the unitary condition on .S, we have

n
(S*S)i,H-l = Z Sk,iSk, i1 = 0
k=1
and therefore S,;_l,?;* Si_1,7;+1+51,q;* Si,i—i—l:O
Substituting in (21) gives

1,001 = 0 for all 4.

Hence the matching at port ¢ isolates port ¢+1 from
port ¢—1.

ITI. CoNCLUSIONS

It has been shown that a certain class of three-port
network can be transformed into a circulator by the
addition of an appropriate reactive discontinuity at
each port. This transformation is possible if the three-
port junction is loss-free and such that (for suitable
port numbering) the transmission from port 1 to 2 is
greater than from 2 to 1, from port 2 to 3 is greater
than 3 to 2, and from 3 to 1 is greater than from 1 to 3.
When the three-port network is symmetrical, the re-
striction reduces to the network, being loss-free and the
moduli of the two transmission coefficients being dif-
ferent.
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The important consequence of the proposed synthesis
is that it is not necessary to obtain complete matching
by means of the ferrite junction configuration and ap-
plied magnetic field, but that external reciprocal ele-
ments may be used, which have, of course, predictable
characteristics. Hence, an approach to the design of
broad-band circulators is proffered.

It has also been shown that by the use of small reac-
tive discontinuities, an imperfect (but loss-free) n-port
circulator can be matched to make wvanish, simul-
taneously, the reflection and one transmission coefficient
at each port. The effect of these small discontinuities on
the other transmission coefficients is of second order
of smallness, so that they cannot generally be made
zero. It follows that the isolation of a practical four-
port circulator must be optimized within the junction,
but any small remaining reflection and cross-coupling
can be matched externally by reactive discontinuities.
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Propagation of Sutface Waves on an
Inhomogeneous Plane Layer”

J. H. RICHMONDY, SENIOR MEMBER, IRE

Summary—The permittivity of a plane layer is assumed to vary
continuously as a function of distance measured from the surface.
Solutions for the field distributions of surface waves on the inhomo-
geneous layer are developed with the WKB technique. Transcen-
dental equations for the phase velocity are derived for TE and TM
modes. These equations are solved most conveniently with the aid
of phase-velocity graphs which are included. The accuracy of the
solution is verified by comparison with the rigorous solution for an
exponential inhomogeneity.

INTRODUCTION

FTVYHE PERMITTIVITY of most radome ma-
terials changes by a significant amount when the
temperature is increased by hypersonic flight

through the atmosphere. The outer surface of the

radome becomes hotter than the inner, resulting in a

* Received April 2, 1962; revised manuscript received, June 28,
1962. This research was sponsored by the Aeronautical Systems Di-
vision, Air Force Systems Command, Wright-Patterson Air Force
Base, under Contract AF 33(657)-7622. ,

t Antenna Laboratory, Department of Electrical Engineering,
The Ohio State University, Columbus, Ohio.

continuous variation in permittivity even if the
radome was designed as a homogeneous structure.

Moreover, new techniques of radome fabrication may
make feasible the construction of continuously in-
homogeneous radomes. This can be accomplished with
variable loading or with wvariable density foams. Al-
ternatively, a multilayer sandwich having many thin
laminations can form an adequate approximation.
These structures may have a greater bandwidth or may
allow a greater range of incidence angles than conven-
tional radomes.

The characteristics of surface waves on inhomo-
geneous layers are of interest to the radome designer
because he must minimize the excitation of these waves
and their deletereous effects on the radar system per-
formance. The antenna designer is interested in the ef-
fects of unintentional inhomogeneities, arising from
thermal gradients, on the performance of surface-wave
antennas, and the advantages that may accrue from
the use of intentional inhomogeneities in such antennas.



1962

Exact solutions in closed form are available only for
a few special cases including the linear and exponential
inhomogeneities. Step-by-step numerical integration
can be applied to the analysis of surface waves on in-
homogeneous layers only on a trial-and-error basis.

A more convenient and useful solution, the WKB
solution (Wentzel, Kramers, and Brillouin [1]), is de-
veloped for the field distribution of surface waves on
inhomogeneous plane layers. These expressions are
employed in deriving the transcendental equations for
the phase velocity. These can be solved most conven-
iently by means of the graphs which are included. The
accuracy of these results is demonstrated by comparison
with the exact solutions for exponentially inhomogene-
ous layers. Finally, the limitations of the WKB solution
are discussed for layers having rapid variations in per-
mittivity.

THEORY
General

Defining a coordinate system as in Fig. 1, consider
the waves which can exist on a lossless, isotropic, in-
homogeneous layer and have the following properties:

1) Harmonic time dependence e/«

2) Plane phase fronts (space dependence e=7),
3) No dependence on the y-coordinate, and

4) Exponential decay ¢~2* normal to the layer.

The dielectric layer is assumed to be infinitely wide but
of finite thickness d. Media I and III are homogeneous
with permeability u, and permittivity €. The per-
meability u of region II is assumed constant, but it
may differ from u,. The permittivity e(x) may vary
continuously as a function of distance from the center
of the layer. It is assumed to be an even function of x
and discontinuous at x= *a.

X
I Hofo
d 1
I Ha€(X) y—-————g—-——z— d
, {
DI /'LOﬁGO

Fig. 1—An inhomogeneous plane layer and the coordinate system.

TE Surface Waves

For the TE surface waves it is assumed that the
electric field intensity vector E is parallel with the y-
axis and is given by

e~%¢="* in region I
f(x)e~i**  in region II )
ex®¢—2  in region 111
and
E,=E, =0 2)
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From Maxwell’s differential equations it follows that

H,=0 3)
and
) (—ja/wue)e **¢ " in region I
o= G ew)f @) in region IT  (4)
o 0w (ja/ wpg)exte1h# in region IIT
where
f(x) = df/dx. (5)

The boundary conditions require that E, and H, be
continuous at x=0, x=a and x = —a. These conditions
lead to the following:

@) = e (6)
(@) = — ap,ee (N
f©) =0 (8)
where
pr = p/no. )

Furthermore, Maxwell’s equations yield the following:
@) + (wne — A9f(x) = 0. (10)

If the permittivity is a slowly varying' function of x,
the WKB [1] solution for (10) is useful. It can be
written in the form

f(=)

Acosf \/wz,ue—hzdx-{—Bsinf Veolue—h?dx

_ i i (11
(w2ue— h2)1/4 (1)

The constant coefficients 4 and B are determined by
use of (6) and (7). In performing the differentiation in-
dicated in (7), it is assumed that the numerator in (11)
is a much more rapidly varying function of x than the
denominator. This leads to the following:

A = (wluee0 — h?) M4

B = p,ae0/(wueen — h?)1/4
m

(12)
(13)
where ¢, is the relative permittivity at the edge of the
inhomogeneous layer (at x =a).

Egs. (8), (11), (12) and (13) yield the following
transcendental equation for the TE surface waves:

P'ra/k

\/u,ea — IL2/k°

tan kf Ve — W2k dx = (14)

where

k= wv/ioco. (15)

1 Eq. (44) gives a more precise statement of the limitations of the
WKB solutlon for layers having rapid variations in permittivity.
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When the wave equation is applied to the field expres-
sions in region I it is found that

o — M= — B

(16)

It is possible to solve (14) and (16) to determine the
surface-wave phase constant %, or #/k. A convenient
method of accomplishing this is developed in a later
section,

TM Surfoce Waves

Since the derivation for the TM surface waves is
similar to that for the TE waves, it will suffice to list
the equations below,

H,=H,=E, = 0. (17)
e~*%¢=1hz in region I
Hy, = {f(x)e= in region 11 (18)
e*e~"* in region III
(ja/wue)e~ e in region I
E, = {(—j/we)f'(x)e~** in region 1T (19)
(—ja/wer)e*e=i** in region 111 (20)
fla) = e
(@) = — aee (21)
@ =0 (22)
@ = Ve
4 cos fa\/m dx+ B sin fa\/w—ﬁﬁe——-—hﬂ‘l dx
' (e — ) =
A = (wneeg — h2)V4eea/\/¢, (24)
B = ave, e/ (wue,eg — h2)14 (25)
a e/ k
tan kj:) Ve, — b2/ k2 dx = —\/urea———_—hﬁ (26)
al — = — R 27

Since E,=0 at x=0, a metal plane may be inserted
at x=0 without disturbing the fields of the TM mode.
Thus, the equations apply equally well for a layer of
thickness ¢ on a metal plane and a symmetrical layer
of total thickness 2a without a metal plane.

ExAct SOLUTION FOR EXPONENTIAL INHOMOGENEITY,
TE Casg

If the permittivity varies with x in accordance with

pee(x) = B2/R% + cebl¥l (28)

it will be referred to as an “exponential inhomogeneity,”
and (10) reduces to

F(@) + kce=lf(x) = 0.

The quantities u,, %, k, ¢ and b are independent of x.
The exact solution of (29) is given by

@) = FIo¥) + GYo(¥)

(29)

(30)
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where

¥ = 2k/ceti2/] b] . (31)

The coefficients F and G can be determined by means
of (6) and (7), yielding

F = [ap, sgn (B) Yo — kv /2 Vi]me/ | b|
G = [—an, sgn (0)Jo + kv/C e/ e e/ | b |

(32)
(33)
where superscript ¢ indicates an argument ¥ evaluated
at x=ga, and sgn (b) is unity if & is positive and —1 if 5
is negative. Eqgs. (8) and (30) yield
ap,sgn (b)) VT — JIV3
Evcetelr  JIVE — JeY?

(34

where the superscript o indicates an argument ¢ eval-
uated at x=0. Furthermore,

al — bt = — k% (35)
Eqgs. (34) and (35) can be employed to calculate the
phase constant % for TE surface waves on the inhomo-
geneous layer described by (28).

It should be pointed out that this rigorous solution
applies to a plane layer whose permittivity is the sum
of an exponential function and a constant, provided that
this constant happens to be the square of the relative
phase constant [see (28)].

(GRAPHICAL SOLUTION

It is interesting to compare the transcendental
equations for surface waves on homogeneous and in-
homogeneous layers. For TE surface waves on a homo-
geneous layer of thickness 2a’, relative permeability g,
and relative permittivity e, [2],

PR =1 , _
U PRy = tan ka’\/u.e, — W2/ (36)

M

For TE surface waves on an inhomogeneous layer of
thickness 2a, relative permeability u, and relative per-
mittivity e(x), (14) and (16) yield

4/72/“ — ! kfa\/“—ﬁﬁd 37
A/ ————— = tan o — x.
u Py [ Ve /k* dx. (37)

A comparison of these two equations shows that the
phase constant 7 is the same (in the WKB approxima-
tion) for the homogeneous and inhomogeneous layers if

f e — WEJRR da
0
[

a =

Nty (38)

Obviously (37) is satisfied by that value of %/k which
satisfies both (36) and (38). The solution of (36) is
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plotted in Fig. 2 as a curve of h/k vs a’/\ for a TE
wave on a homogeneous layer having u,e,=8. (Ao repre-
sents the wavelength in free space.) Given the per-
mittivity function e.(x) for an inhomogeneous layer, it
is possible to plot the solution of (38) on the same graph
by choosing several numerical values for k/k and
carrying out the indicated integration to determine the
corresponding values of a’. The phase constant % (or
h/k) for the inhomogeneous layer is then determined
from the intersection of the two curves.

The transcendental equation for TM surface waves
on a homogeneous layer is [2]

m/E =1 —
€ 4/ —————— = tan ka'/p,en — h*/R2.

39
kg — h2/R? (39)

From (26) and (27), the transcendental equation for
TM surface waves on an inhomogeneous layer is

€g R — tan k M€ }Z k (i.’C. 40
Mr€a h /‘E 0

A comparison of (39) and (40) shows that (40) is
satisfied by that value of #/k which satisfies both (38)
and (39). The solution of (39) is plotted in Fig. 2 as a
curve of /k vs a’ /N for TM waves on a homogeneous
layer having u.e,=8. The phase constant for an in-
homogeneous layer is determined by the intersection
of this curve with the graph of (38).

To illustrate the results that may be expected from
the WKB formulas, three examples are listed in Table I.

The locus of solutions of (38) is plotted in Fig. 2
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the WKB formulas it is assumed that the permittivity
is a slowly varving function. In particular, it is as-
sumed that

gl 6| K 2k(ue, — h2/R2)312 (41)

everywhere except at the edges where the permittivity
is discontinuous. (The prime indicates differentiation
with respect to x.) Accurate results may be anticipated
only if this inequality is satisfied.

In Examples 1, 2 and 3 (Table I), inequality (44) is
satisfied by a factor of 1.00, 5.00 and infinity, respec-
tively. It may be noted in Table I that accurate results
are obtained if (44) is satisfied.

Fig. 3 shows the exact and WKB solutions for the

30
p
>.€/ Eg.38
0 TEq
h £q. 36 "Z»-/ /Mo
k
|
/ /<z__Eq.39 Heer=8
10
0 610 020

Fig. 2—Relative phase constant vs thickness for TE, gnd TM, sur-
face waves on a homogeneous dielectric layer of thickness 2a’.

TABLE 1

PuAsE VELOCITY oF TE¢ MoODE ON INHOMOGENEOUS LAYER HAVING @ =0.25)¢

Example ‘ prer () rer(0) ] prer (@) ik e
] I 0.2966e1-08%2k1z1 16,3500 6.6556 ’ 8 { 2.565 2.5217
2 0.5388¢0.29%klal 4.7 1455 7.6843 8 2.685 2.6731
3 8.0 8.0 8 2.71 2.71
for Example 1. The trapezoidal rule, Simpson’s rule; or 3 ‘
tables of integrals may be used to evaluate a’ in (38)
for several values of h/k. The resulting data points wKs
(h/k, a’) are entered on Fig. 2 and connected by the Elzw Example Example
curve labeled “Eq. 38.” The intersection with the TE, Exomple 2 3
curve yields k/k=2.565 as listed in Table I, and the " 1
intersection with the TM, curve yields k/k=2.490. AT et - ceblxl+_'12_
The exact solutions listed in Table I were obtained by o = 0.25% K
letting ¥(0) =1 and ¢ (a)=2.3522 for Example 1, and ela) = 8.0
Y(0)=5 and ¥(a) =6.2964 for Example 2. ¢(x) is de- o
fined by (31).
For TE waves, comparison of (36) and (37) shows
that the WKB solution reduces to the exact solution It 7| B
in the special case of the homogeneous layer. For TM (o}

waves (39) and (40) show that the WKB solution is
exact for the homogeneous layer. In the derivation of

Fig. 3—WKB and exact solutions for the relative phase velocity
on an exponentially inhomogeneous layer.
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relative phase velocity on exponentially inhomogeneous
layers such as those listed in Table 1.

Additional curves of phase constant vs thickness
are available for homogeneous layers having u-e,=2, 4,
8 and 15 [3]. These may be employed in solving for
the phase constants of inhomogeneous layers having
v =2, 4, 8 and 15 with the technique described herein.

CONCLUSION

The permittivity of a plane layer is assumed to vary
continuously as a function of distance measured from
the surface. Solutions for the field distributions of sur-
face waves on the inhomogeneous layer are developed
with the WKB technique. Transcendental equations
for the phase velocity are derived for TE and TM
modes. These equations are solved most conveniently
with the aid of phase-velocity graphs which are in-

IRE TRANSACTIONS ON MICROWAVE THEORY AND TECHNIQUES

November

cluded. The accuracy of the solution is verified by
comparison with the rigorous solution for an exponential
inhomogeneity.

Reasonably good accuracy is obtained even when the
relative permittivity varies from 6 to 8 in a distance of
0.25 wavelength.

The formulas presented herein reduce to the rigorous
solution for homogeneous layers and are accurate if
the permittivity gradient is small at each point within
the layer.
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UHF Backward-Wave Parametric Amplifier*

S. OKWITY, SENIOR MEMBER, 1IRE, M. I. GRACE], MEMBER, IRE, AND E. W. SARD{, MEMBER, IRE

Summary—This paper describes a breadboard model of a UHF
varactor diode backward-wave parametric amplifier that can be
electronically tuned over an octave tuning range (250-500 Mc). It
operates in a mode that has a relatively constant idler frequency;
however, it uses two forward-wave transmission lines in contrast
to the backward-wave transmission line requirement previously
reported.

A theoretical discussion on the design considerations of this
mode is presented and applied to the UHF model. Measurements
taken in the conventional mode of operation (output frequency equal
to the input frequency) yielded voltage gain bandwidth products in
excess of 100 Mc and over-all effective receiver noise temperatures
of less than 140°K. Detailed measurements in the mode where the
constant idler frequency is used as the output were not taken because
directional filters and circulators, which are necessary in this mode,
were not available.

I. INTRODUCTION

HE BACKWARD-WAVE parametric amplifier
(BWPA) is a low-noise preamplifier that is capa-
ble of being electronically tuned at a rapid rate
over a greater-than-octave tuning range [1]-[3]. It

* Received March 5, 1962; revised manuscript received July 5,
1962. This work was performed under Contract AF 30(602)-2197
with the United States Air Force Systems Command, Rome Air
Development Center, Griffiss Air Force Base, Rome, N. Y.

+ Airborne Instruments Laboratory, Cutler-Hammer, Inc., Deer
Park, Long Island, N. Y.

t Airtron, Inc., Morris Plains, N. J.

consists, in general, of two separate and distinct cir-
cuits that are coupled together by means of nonlinear
or time-varying reactive elements.

Recently, a new class of BWPA has been evolved
[4], [5] in which the center frequency of the output
pass band (which is taken at the idler frequency) re-
mains constant as the input amplification band of the
amplifier is varied. This is an advantage over the con-
ventional BWPA since it eliminates the tracking prob-
lems associated with the complex demodulator neces-
sary to convert the normally varying output frequency
to a constant IF. It thus yields an amplification system
that has a greater tuning rate potential than that of the
conventional BWPA. However, the realization of this
amplifier mode required one of the two coupled trans-
mission lines to have a backward-wave characteristic,
which at the lower frequencies does not present any
problems but presents increasing design difficulty as
the frequency approaches the UHF and microwave
region. :

This paper proposes a new configuration that yields
a nearly constant idler frequency over an octave tuning
range in which both of the coupled transmission lines
are forward-wave types and it presents theoretical and
experimental results of a UHF model whose design was
based upon this configuration.



